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Abstract

Seismic inversion has become almost routine in quantitative 3D seismic interpretation. To ensure the quality
of the seismic inversion, the input seismic data need to have a high signal-to-noise ratio. With the current low oil
price environment, seismic reprocessing is often preferred over reacquisition to improve data quality. Common
filter pairs include forward and inverse f -k and Radon transforms. Forward and inverse migrations (i.e., migra-
tion and demigration) are a more recently introduced transform pair that, when used together in an iterative
workflow, results in a least-squares migration algorithm. Least-squares migration compensates for surface varia-
tion in data density and, when combined with a filter applied to prestack migrated images, suppresses the op-
erator and data aliasing. We apply a least-squares migration workflow to a fractured-basement data set from the
Texas Panhandle to demonstrate the enhancement in signal-to-noise ratio, the reduction in acquisition footprint
and migration artifacts, and the improvement in the P-impedance inversion result.

Introduction
Thanks to improved algorithms and simple user inter-

faces, seismic impedance inversion has become a routine
means of incorporating well data to estimate lithologic
properties in 3D quantitative interpretation. However,
the quality of seismic inversion depends on the quality
of the seismic amplitude data. To improve seismic data
quality, we either acquire and process new data, or
reprocess old data to obtain a better, more amplitude-
friendly image. Even though reacquiring data using a
denser, wider azimuth survey is more likely to produce
better images, such acquisition is costly and time con-
suming. Given the current low oil price, reprocessing
might be the only feasible choice for many operators.

Reprocessing old seismic data involves many differ-
ent tasks, such as surface-consistent residual statics cor-
rection, velocity model refinement, coherent noise
suppression, trace balancing, 5D interpolation, prestack
time/depth migration, and other forms of data condition-
ing. Each of these tasks contributes to the final image
improvement. In this paper, we focus on the last two
tasks — migration and data conditioning through the
use of a constrained conjugate-gradient least-squares mi-
gration method.

Nemeth et al. (1999) were perhaps the first to use mi-
gration and demigration (least-squares migration) as a
seismic processing pair with Nemeth et al. (2000) show-
ing how one can separate signal from noise. Most sub-

sequent least-squares migration has focused on marine
data, in which the acquisition, while aliased, is still regu-
lar, resulting in Yu et al.’s. (2006) migration deconvolu-
tion algorithm. Since then, the use of least-squares
migration has further advanced, with modern implemen-
tations by Zeng et al. (2014) inverting for impedance
changes rather than reflectivity at offset. Applications
of the least-squares migration of 3D land data have been
much more limited, with Guo et al. (2016) applying con-
strained least-squares migration to Mississippi Lime
plays in Ness Co., Kansas, and Osage Co., Oklahoma, and
Verma et al. (2016) applying constrained least-squares
migration to a Mississippi Lime survey in north Texas.
Our work builds on these last two publications.

We begin our paper with a short review of the least-
squares migration workflow, with mathematical and
workflow implementation relegated to the appendices.
We then describe the data quality and processing chal-
lenges for a 3D data volume acquired over fractured
basement in the Texas Panhandle. Although this is a
modern wide-azimuth survey acquired in 2013 with a
nominal bin size of 82.5 × 82.5 ft, the shallow target at
2500 ft results in a strong operator aliasing and acquis-
ition footprint. We apply conventional migration and
constrained least-squares migration to this data volume
and compare the results. Finally, we validate our find-
ings through seismic attributes, improved well ties, and
P-wave impedance inversion.
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Method
Migration is central to seismic imaging. The main

idea behind migration is to broadcast each amplitude
sample onto an ellipsoidal pattern computed from the
velocity model and then stack all the resulting ellipsoids
(Figure 1). If adequately sampled on the surface and
given an accurate velocity model, areas of constructive
interference result in reflectors and diffractors. Other
areas of destructive interference result in low reflectiv-
ity. Compared with simple stacked images of normal
moveout-corrected gathers, migration collapses diffrac-
tors and moves (or “migrates”) dipping reflectors to
steeper dips in the updip direction.

If the surface data are insufficiently sampled, the im-
age suffers from two types of aliasing. First, the ellip-
soids associated with reflected and diffracted energy
may not destructively interfere at steep dips, giving rise
to operator aliasing (Figure 1). Second, undersampled
noise, such as ground roll and shallow diffractions, which
(if properly sampled) should exhibit short apparent wave-
length and strong moveout and should be filtered out by
migration, are instead aliased to longer apparent wave-
length and gentler moveout and will be passed and sub-
sequently imaged by migration (Dev and McMechan,
2009; Pramik, 2011). Biondi (2001) describes a common
workflow to suppress operator aliasing that simply filters
out higher frequencies when migrating to steeper dips.

Thus, the key objectives of our least-squares migra-
tion workflow are to (1) suppress aliased signal and
aliased noise in the final image, (2) preserve rather than
reject the higher frequency information of steeply dip-
ping reflectors (Zeng et al., 2017), and (3) compensate
for irregular surface sampling that gives rise to acquis-
ition footprint and other amplitude artifacts.

To understand constrained conjugate-gradient least-
squares migration, let us break down the method into
four elements: migration, least squares, conjugate gra-
dient, and constraint. The meaning of each element is

discussed below, in that order, with details given in the
appendices.

Migration
The migration operator can be understood as a filter

implemented as a matrix operator, applied to the pre-
stack data to produce a reflectivity model (i.e., the mi-
grated images). The reverse operator is demigration
(more commonly known as the forward-modeling oper-
ator). This demigration operator is usually denoted asG
(for Green’s function), which is a filter that, when ap-
plied to a reflectivity model m, would produce the pre-
stack raw seismic data d:

d ¼ Gm: (1)

We want to solve for the reflectivity modelm. To do so,
we need to invert operator G:

m ¼ G−1d: (2)

However, in almost all cases, the reflectivity model
m and the prestack raw seismic data d do not have
the same dimensional configuration, and therefore, the
demigration operator G is not only a nonsquare matrix
but may also be “rank deficient,”which physically means
that some areas of the subsurface are poorly illuminated
(such as the shadow zone in Kirchhoff migration). Such a
matrix G cannot be directly inverted. Fortunately, we
can approximate the inverse of G by its transpose, GT

(Nemeth et al., 2000). Hence, migration is the transpose
of demigration:

m ¼ GTd: (3)

UsingGT as an approximation ofG−1 typically produces
adequate image quality for dense data. However, for old

Figure 1. Schematic showing themigration process. The main
idea is to copy each amplitude value along the ellipsoids and
then stack all the subsequent images together. If the data are
sufficiently sampled, some areas constructively interfere into
reflectors, whereas others destructively interfere into zero-data
zones. If the data are insufficiently sampled, there may be only
partial destructive interference, resulting in aliasing.

Figure 2. Crab-eye rock at Charon’s Garden, Wichita Moun-
tains (see how it looks like a frowny crab?). The rock is com-
posed of fractured granite with multiple sets of joints that are
several tens of feet apart. This is an outcrop analog to the frac-
tured basement 2500 ft below the ground.
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data with low fold or modern data like
our application with a shallow target, this
approximation no longer holds, resulting
in the annoying crosscutting migration
artifacts seen on the final image.

Least squares
The goal of “least squares” is to find

a solution m such that the sum of the
squares of all elements of the error
(d −Gm) is the least. That is, instead of
finding m such that

d −Gm ¼ 0; (4)

we want to findm such that the objective
function,

J ¼ ðd −GmÞTðd −GmÞ (5)

is minimum.

Conjugate gradient
The conjugate-gradient method is first

developed by Hestenes and Stiefel (1952).
For a least-squares problem in the form

Ax ¼ b; (6)

the conjugate-gradient method involves
finding a set of A-conjugate directional vectors S ¼
fp0;p1; : : : ;pn−1g and incorporating them to the solution
x iteratively. Appendix B explains the conjugate-gradient
method in detail.

The key advantage that differentiates the conjugate-
gradient method from the other first-order iterative ap-
proaches to solve least-squares problems, including QR-
decomposition, singular-value decomposition, and
steepest descent method, is that theoretically it guaran-
tees to converge after n iterations for an n × nmatrixA,
whereas other methods cannot guarantee to converge
after a finite number of iterations (Lewis et al., 2006).
Therefore, the conjugate-gradient method generally has
the fastest convergence rate — the rate at which we
approach the true solution iteratively.

Constraints
Finally, we need to be aware that the data consist of

signal and noise. Because of this, if we focus only on
solving the exact solution for the least-squares problem,
we are in fact solving for a reflectivity model that is
responsible for signal and noise. We do not want our
seismic image to represent the noise in the raw gathers.
Therefore, we need to constrain the reflectivity model
to only represent the signal portion of the data. The con-
straint we use in this paper is prestack structure-ori-
ented filtering (SOF). The workflow of SOF involves
calculating the structural dip from the stacked volume,
computing the coherence attribute along the structural

Figure 3. Regional geologic cross section through the Panhandle field (Soren-
son, 2005). Source rocks are located in the deeper part of the Anadarko Basin
and have an age range from Ordovician to Pennsylvanian, including the Missis-
sippian Woodford Shale. The most common reservoir rocks are the early Per-
mian carbonate and the Granite Wash. Oil also fills joints and fractures that
formed in the previously exposed basement highs. Above the reservoir rocks,
middle Permian evaporites act as a seal. Such a thick, high-velocity layer of
evaporite is the cause of strong head waves in seismic data.

Figure 4. A representative 3D shot gather sorted by offset
with interpreted events, including head waves, reflections,
air blast (or ground roll?), and reverberations. At the target,
top basement depth (t ¼ 0.57 s), critical refraction occurs at
offset h ¼ 3200 ft. Beyond this point, the signals are highly
contaminated by coherent, moderate-bandwidth head waves.
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dip, and finally applying a lower-upper-middle filter to
the input data based on coherency. The data are filtered
where the coherency is high (e.g., strong reflectors) and
are kept the same where the coherency is low (e.g.,
faults and discontinuities). Therefore, SOF suppresses
random noise and the operator and data aliasing that
cuts across the dominant reflectors, while preserving
edges (Zhang et al., 2016). Our workflow follows that
of Guo et al. (2016), whereas Appendix E provides de-
tails on our implementation of these constraints within
the conjugate-gradient solution framework.

Application and results
We applied the constrained conjugate-gradient least-

squares migration to a Texas Panhandle data set. The
Panhandle-Hugoton field, of Texas, Oklahoma, and Kan-
sas, is a giant oil field and the largest conventional gas
field in North America, with an estimated ultimate recov-
ery (EUR) of 1400 million barrels of oil and 75 trillion
cubic feet of gas (Sorenson, 2005). Although the field
has been extensively produced, previously untapped lo-
cal hydrocarbon accumulations are still encountered.
Recent drilling activity indicates that somewells produce
directly from basement fractures, suggesting a shallow
“buried-hill” reservoir type (Figure 2). Our main objec-

tive is to use seismic attributes and inversion results to
identify open fracture zones that are potentially filled
with hydrocarbon.

The top basement is very shallow (approximately
2500 ft deep, equivalent to approximately 600 ms two-
way-traveltime), giving rise to some processing chal-
lenges. Overlaying the top of the basement is a thick
Permian evaporite layer, causing strong head waves
(Figure 3). Reflection signals are overprinted by strong
coherent noise, including ground roll and reverberating
refractions (Figure 4). Due to the shallow target, some
gaps in the source-receiver geometry, and the nature of
the orthogonal shot and receiver line acquisition pro-
gram (Figure 5), the seismic data suffer from the acquis-
ition footprint.

Figure 5. The source (red squares) and receiver (blue
crosses) geometry of the seismic survey. Linear gaps in the
source and receiver locations are associated with roads. Other
smaller, circular gaps are areas inaccessible to vibroseis trucks.
These gaps, together with the rectangular gridding geometry,
generate acquisition footprint in seismic data, especially at a
shallow target depth.

Figure 6. Vertical slice through the seismic amplitude volume
generated from (a) conventional Kirchhoff prestack time mi-
gration, (b) unconstrained conjugate gradient least-squares pre-
stack time migration, and (c) constrained conjugate gradient
least-squares prestack time migration. The same migration al-
gorithm is used in all cases. Note the crosscutting migration
artifacts (red lines) in the conventional migrated image, which
are enhanced in the least-squares migrated image without the
constraint. Also, note a sudden amplitude decrease (yellow el-
lipses) where a highway intersects the profile. The constrained
conjugate gradient least-squares migration suppresses those ar-
tifacts and provides better amplitude balancing.
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After applying coherent noise-suppression techniques
described by Verma et al. (2016), we evaluated both con-
ventional Kirchhoff prestack time migration and con-
strained conjugate-gradient least-squares migration. We
then computed geometric attributes and impedance in-
version from both volumes in order to quantify any im-
provement from constrained conjugate-gradient least-
squares migration.

Figure 6 shows a vertical slice through
the seismic amplitude volumes generated
by conventional Kirchhoff, unconstrained
conjugate-gradient least-squares, and
constrained conjugate-gradient least-
squares prestack time migration. The
conventional Kirchhoff migrated result
exhibits strong steeply dipping migration
artifacts due to operator aliasing, even
though we used only the low-frequency
components to image steep dips as de-
scribed by Biondi (2001). This aliasing
gives rise to acquisition footprint in sub-
sequent attribute and inversion results.
Without the constraint, least-squares mi-
gration image enhances those artifacts
because the least-squares element alone
preserves noise components that have
leaked through migration. The con-
strained conjugate-gradient least-squares
migration result increases the signal-to-
noise ratio, enhances reflection clarity,
and fills in the illumination gaps caused
by highways. The SOF constraint and
least-squares migration contribute to a
higher signal-to-noise ratio and better am-
plitude balancing. The SOF constraint
takes an initial reflectivity model and re-
jects components that are inconsistent
with its neighbors and with the local dips.
Least-squares migration then adjusts this
model further to better fit the (sparse)
surface data.

Figure 7 shows coherence time slices
below the top basement generated by
conventional Kirchhoff and constrained
conjugate gradient least-squares pre-
stack time migration. Most of the grid-
like (hash) artifacts are suppressed on
the coherence time slice computed from
the constrained conjugate-gradient least-
squares migration result.

The same effect can be observed in
the near-offset-stack P-impedance inver-
sion results and inversion misfit error
maps (Figures 8 and 9). The acquisition
footprint is greatly reduced in the con-
strained conjugate-gradient least-squares
migration result, making low-impedance
zones of interest smoother and easier
to identify. These low-impedance zones

contain producing well locations in the survey area
and correspond to open fractures filled with hydrocar-
bons. The impact on prestack azimuthal anisotropy
analysis is also significant (T. Ha and K. J. Marfurt,
personal communication, 2017). Unfortunately, the
absence of an S-wave sonic log prevented prestack
inversion.

Figure 7. Coherence time slice at t ¼ 0.608 s (close to top basement) generated
from (a) conventional Kirchhoff prestack time migration and (b) constrained
conjugate gradient least-squares prestack time migration. Most of the grid-like
low-coherence hash pattern (red lines) seen in the conventional migrated coher-
ence map is suppressed in the constrained conjugate gradient least-squares mi-
grated coherence map.

Figure 8. Phantom horizon map 0.14 s below the top basement through P-
impedance volumes generated from (a) conventional Kirchhoff prestack time
migration and (b) constrained conjugate gradient least-squares prestack time mi-
gration. The impedance map created by constrained conjugate gradient least-
squares migration exhibits less hash-pattern noise, making it easier to isolate
zones of low impedance corresponding to potential open fractures filled with
hydrocarbons.
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Conclusions
Evaluation of the results of the constrained conjugate-

gradient least-squares migration on a Texas Panhandle
data set shows a significant improvement in seismic data
quality by reducing migration artifacts, suppressing
acquisition footprint, and enhancing reflection clarity.
Zones of low-impedance, hydrocarbon-filled open frac-
tures are better delineated using inversion results from
the constrained conjugate-gradient least-squares migra-
tion. Three iterations of the conjugate-gradient solution
required three prestack migrations and three prestack
demigrations, with a computation cost six times that of
conventional migration. This increase in computation
cost is small compared with the velocity analysis cost
associated with conventional migration followed by
residual velocity analysis in a Deregowski loop. In con-
trast, the same velocity is used for each iteration of mi-
gration and demigration. Our caveat is that interpreters
must recognize that even this sophisticated workflow
needs careful data processing. Specifically, a good veloc-
ity model, surface-consistent residual statics corrections,
and coherent noise suppression, are equally important.
Only together with a good velocity model and higher sig-
nal-to-noise data can the constrained conjugate-gradient
least-squares migration exhibit its full potential.
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Appendix A

Least-squares migration
In this section, we provide the math-

ematical background for least-squares
migration.

We first start with the well-known lin-
ear equation:

d ¼ Gm; (A-1)

where d is the original prestack data
measured on the earth’s surface; G is the
forward Kirchhoff modeling operator (i.
e., the “demigration” operator); and
m is the true migrated result, which is
what we seek.

In general, G is not a square matrix,
because d and m may have different
lengths. Therefore, we cannot simply in-
vert G and put it on the other side of the

equation. The transpose of G (demigration) operator GT

is the Kirchhoff migration operator. We usually consider

m 0 ¼ GTd (A-2)

as the migrated result, which is an accurate assumption
if the surface data are regularly and densely sampled. In
general, the scale of the migrated result is not equivalent
to the scale of the original data, although relative ampli-
tude changes, such as the amplitude variation with offset
and amplitude variation with azimuth (AVAz) effects, are
preserved. We also assume thatGT (migration operator)
is a good approximation to the inverse ofG (demigration
operator). This assumption is not valid under the math-
ematical lens, particularly for undersampled or irregu-
larly sampled data.

Instead, we solve for m that minimizes the following
objective function:

J ¼ kd −Gmk2: (A-3)

Expanding J, we obtain

J ¼ kd −Gmk2 ¼ ðjd −GmjÞTðjd −GmjÞ
¼ dTd − ðGmÞTd − dTðGmÞ þ ðGmÞTðGmÞ
¼ dTd −mTGTd − dTGmþmTðGTGÞm
¼ dTd − 2dTGmþmTðGTGÞm; (A-4)

where the scalars

mTGTd ¼ dTGm: (A-5)

To find the minimum of J, we take the gradient of
Jð∇JÞ and set it to zero:

Figure 9. Phantom horizon map 0.14 s below the top basement through inver-
sion misfit error volume generated from (a) conventional Kirchhoff prestack
time migration and (b) constrained conjugate gradient least-squares prestack
time migration. The constrained conjugate gradient least-squares migration er-
rors are smoother and contain less hash-pattern artifacts than those created by
conventional Kirchhoff migration.
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∇J ¼ −2GTdþ 2GTGm ¼ 0; (A-6)

or

GTGm ¼ GTd: (A-7)

An alternative way to write equation A-7 is to turn
equation A-1 into what we call the “normal” equation
by multiplying both sides with the transpose of G (i.
e., GT).

From here, we can multiply both sides by the inverse
of GTG (i.e., ðGTGÞ−1) to obtain

ðGTGÞ−1GTGm ¼ ðGTGÞ−1GTd (A-8)

such that the left of m becomes an identity matrix, giv-
ing

m ¼ ðGTGÞ−1GTd: (A-9)

To avoid instability, the least-squares solution (such
as in deconvolution) often introduce a prewhitening
factor εI, which is a fraction of the diagonal of GTG

to obtain

m ¼ ðGTGþ εIÞ−1GTd; (A-10)

thereby favoring the solution with the minimum reflec-
tivity energy. In our application, we will use a constraint
(SOF) that favors piecewise continuous (i.e., edge-pre-
serving) solutions over all others.

Appendix B

Conjugate-gradient least-squares migration
The linear system involved in the conjugate gradient

method has the form

b ¼ Ax; (B-1)

where

A ¼ GTG; (B-2)

x ¼ m; (B-3)

and

b ¼ GTd: (B-4)

To understand the conjugate gradient method, we
first examine the conjugate direction method. A set
of vectors S ¼ fp0;p1; : : : ;pn−1g is said to be A-conju-
gate if pT

i Apj ¼ 0 for i ≠ jði; j ∈ ½0; n − 1�Þ. If such a set
of vectors is provided, the conjugate direction method

is guaranteed to converge after n iterations. A summary
of the conjugate direction method is as follows:

Step 0. choose a starting point x0 and compute
r0 ¼ b − Ax0.

For k ¼ 0 to (n − 1) do:

Step (1) αk ¼ pT
k rk∕pT

kApk
Step (2) xkþ1 ¼ xk þ αkpk
Step (3) rkþ1 ¼ rk − αkApk
Step (4) If the residual krk þ 1k < ε, a convergence

testing threshold, then xk þ 1 is the solution, and
one quits the loop. Otherwise, continue.

Normally, the set of vector pi is not known before-
hand. Instead, we will generate a specific set of vectors
pi while iterating through the conjugate gradientmethod:

Step 0. choose a starting point x0 and compute
r0 ¼ b − Ax0. Let p0 ¼ r0

For k ¼ 0 to (n − 1) do:

Step (1) αk ¼ rTk rk∕pT
kApk

Step (2) xkþ1 ¼ xk þ αkpk
Step (3) rkþ1 ¼ rk − αkApk
Step (4) If the residual jjrk þ 1jj < ε, a convergence

testing threshold, then xk þ 1 is the solution, and
one quits the loop. Otherwise, continue.

Step (5) βk ¼ rTkþ1rkþ1∕rTk rk
Step (6) pkþ1 ¼ rkþ1 þ βkpk.

Among the various methods to solve the least-squares
problem, the conjugate gradient method usually yields
the fastest rate of convergence (the algorithm does not
require external input and guarantees to converge after
n iterations). For these reasons, it is often the preferred
method in many fields of study, including migration in
geophysics.

For consistency with the notation used in previous
geophysical research, we now replace p with h, and
r with g:

Step 0. choose a starting solution m0 and compute
g0 ¼ GTd −GTGm0. Let h0 ¼ g0 be the conjugate
direction.

For k ¼ 0 to (n − 1) do:

Step (1) αk ¼ gTk gk∕hT
k ðGTGÞhk ¼ gTk gk∕ðGhkÞTGhk

Step (2) mkþ1 ¼ mk þ αkhk
Step (3) gkþ1 ¼ gk − αkG

TGhk
Step (4) If kgkþ1k < ε, a convergence testing threshold,

then mkþ1 is the solution, and one quits the loop.
Otherwise, continue.

Step (5) βk ¼ gTkþ1gkþ1∕gTk gk
Step (6) pkþ1 ¼ rkþ1 þ βkpk.

Because migration (GT is the migration operator)
and demigration (G is the demigration operator) are
computationally intensive, we want to minimize the
number of times we apply them. Therefore, we intro-
duce r as the residual in the demigrated domain (i.e.,
the domain of the original data d), in contrast to g,
which is the residual in the model domain (i.e., the do-
main of the solution m).
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To do so, in step 0, set

r0 ¼ d −Gm0; (B-5)

and

g0 ¼ GTr0 ¼ GTðd −Gm0Þ ¼ GTd −GTGm0: (B-6)

Also, to make the result unbiased, we choose

m0 ¼ 0: (B-7)

Thus,

r0 ¼ d (B-8)

and

g0 ¼ GTd: (B-9)

In step 1, we note howA ¼ GTG changes the denom-
inator to a simple dot product. We only need to apply
demigration G to the conjugate gradient hk and save
one migration operator GT. In step 3, we note that gkþ1

is the migrated rkþ1, and gk is the migrated residual rk (i.
e., gkþ1 ¼ GTrkþ1, and gk ¼ GTrk). Therefore, we can
separate step 3 into two parts:

rkþ1 ¼ rk − αkGhk; (B-10)

and

gkþ1 ¼ GTrkþ1: (B-11)

Because step 1 (calculating αk) involves reading data
from gk and Ghk, it would be more efficient to merge
step 1 with rkþ1 ¼ rk − αkGhk. Similarly, we can merge
step 5 with step 6 for the same reason.

Applying the above modifications, we can rewrite the
conjugate gradient method for migration as follows:

Step 0. choose a starting solutionm0 ¼ 0. Set r0 ¼ d.
Compute g0 ¼ GTd. Let h0 ¼ g0 be the conjugate di-
rection.

For k ¼ 0 to (n − 1), do:

Step (1) αk ¼ ðgTk gkÞ∕ðGhkÞTGhkÞ, rkþ1 ¼ rk − αkGhk
Step (2) mkþ1 ¼ mk þ αkhk
Step (3) gkþ1 ¼ GTrkþ1

Step (4) If jjgk þ 1jj < ε, a convergence testing thresh-
old, then mkþ1 is the solution, and one quits the
loop. Otherwise, continue.

Step (5) βk¼gTðkþ1Þgðkþ1Þ∕gTk gk, and hkþ1¼gkþ1þβkhk

The above suite of equations should be familiar to most
people working with the conjugate gradient least-
squares migration. What we have done here is nothing
more than a “translation” between mathematical papers
and geophysical migration, by replacing notations of
variables.

Appendix C

Constrained least-squares migration
Now that we have reviewed the workflow of conju-

gate gradient least-squares migration, let us move on to
add a constraint to the workflow. The purpose of the
constraint is to increase the signal-to-noise ratio and re-
duce the migration aliasing artifacts. A constraint is sim-
ply a filter F applied to the solution m — a means to
“bend” the result to our will:

m̄kþ1 ¼ Fðmkþ1Þ ¼ Fðmk þ αkhkÞ: (C-1)

To improve the conjugate direction, we also need to
apply filter F to hk∶h̄k ¼ FðhkÞ.

Because filter F might be computationally intensive,
we assume F to be a relatively linear operator. There-
fore, we can reduce computational cost by setting
h̄k ¼ m̄kþ1 −mk∕αk.

As we introduce the constraint to the workflow, we
expect the residual rk to be as close to the noise portion
of the input data as possible. That is, the magnitude of
the residual krkk should become smaller and then sta-
bilize, but should never reach zero. Because we do not
know the magnitude of the noise portion in the original
data, a constant threshold ε of the residual’s magnitude
is no longer valid as a stopping criterion. We need a new
condition to quit the loop.

In all of our experiments, the result is considered suf-
ficiently improved for interpretation purposes when the
change of the residual is within 10% of the residual in
the current iteration (typically after three iterations).
Therefore, we define a new stopping criterion for our
workflow as when krkþ1 − rkk∕krkþ1k < 0.1.

The constrained conjugate gradient least-squares mi-
gration workflow is as follows:

Step (0). choose a starting solution m0 ¼ 0, set
r0 ¼ d, compute g0 ¼ GTd, and let h0 ¼ g0 be the con-
jugate direction.

For k ¼ 0 to (n − 1) do:

Step (1) αk¼gTk gk∕ðGhkÞTGhk, and rkþ1¼rk−αkGhk.
Step (2) mkþ1 ¼ mk þ αkhk
Step (3) m̄kþ1 ¼ Fðmkþ1Þ
Step (4) If krkþ1 − rkk∕krkþ1k < 0.1, then m̄kþ1 is the

solution, and one quits the loop. Otherwise, continue.
Step (5) gkþ1 ¼ GTrkþ1

Step (6) h̄k ¼ m̄kþ1 −mk∕αk
Step (7) βk¼gTðkþ1Þgðkþ1Þ∕gTk gk, and hkþ1¼gkþ1þβkh̄k.

Appendix D

Modification for weighted least-squares migration
Seismic data often contain undesirable linear noise,

such as head waves. Ideally, such noise should be
muted before migrating the data. Similarly, the demigra-
tion process may include some data-truncation artifacts
due to the nature of inverse Fourier transform used to
apply the iω operator, causing potential wrap-around or
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other artifacts after migration (Fig-
ure D-1). Such artifacts in demigrated
data must also be muted.

Muting can be understood as a
weighting operator, in which the points
representing head waves and wrap-
around artifacts are set with weights =
0, whereas the points representing use-
ful data are set with weights = 1. Taper-
ing gives weights between 0 and 1. We
need a solid mathematical ground for
the weighted least-squares problem.

The objective function that we want
to minimize now becomes

J ¼ kWðd −GmÞk2: (D-1)

Expanding J, we have

J¼ðWðd−GmÞÞTWðd−GmÞ
¼ðd−GmÞTWTWðd−GmÞ
¼ðdT−mTGTÞWTWðd−GmÞ
¼dTWTWd−mTGTWTWd

−dTWTWGmþmTGTWTWGm: (D-2)

The twomiddle terms are basically the
transpose of each other and thus are
equal to each other, giving

J ¼ dTWTWd − 2dTWTWGm

þmTGTWTWGm: (D-3)

To minimize J, we need to find where
∇J ¼ 0 with respect to m:

∇J ¼ −2ðdTWTWGÞT
þ 2GTWTWGm ¼ 0; (D-4)

or

GTWTWGm ¼ GTWTWd: (D-5)

Updating the workflow, we have
Step (0). choose a starting solution

m0¼0, set r0¼d, compute g0¼GTWT

Wd, and let h0 ¼ g0 be the conjugate di-
rection.

For k ¼ 1 to n do:

Step (1) αk¼gTk−1gk−1∕ðGhk−1ÞTWT

WGhk−1, and rkþ1¼rk−1−αkGhk−1
Step (2) mk ¼ mk−1 þ αkhk−1
Step (3) m̄k ¼ FðmkÞ
Step (4) If, krk − rk−1k∕krkþ1k < 0.1,

then m̄k is the solution, and one quits
the loop. Otherwise, continue.

Step (5) gk ¼ GTWTWrk

Figure D-1. (a) A demigrated CDP gather showing wrap-around artifacts close
to the time zero. These artifacts are inherent to the forward modeling (i.e., demi-
gration) operator, due to the nature of the inverse Fourier transform. (b) Mi-
grated result of demigrated data in panel (a). The high-amplitude artifacts at
the bottom of the migrated CDP gather are caused by such wrap-around artifacts.
Thus, it is important to mute (or alternatively, sufficiently pad) the top part of the
demigrated gathers.

Figure D-2. (a) A migrated CDP gather showing head waves and reverbera-
tions. (b) Demigrated result of the migrated data in panel (a). The low-frequency
artifacts at far offset in demigrated gather are caused by inadequate suppression
of head waves and reverberations. Thus, if the muting and noise suppression
applied on the original data is insufficient to remove the head waves and rever-
berations, we need to mute the migrated result as well.
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Step (6) h̄k ¼ m̄k −mk−1∕αk
Step (7) βk ¼ gTk gk∕gTk−1gk−1 and hk ¼ gk þ βkh̄k.

In practice, applying such weights is equivalent to muting
the data in the unmigrated domain (i.e., the domain of the
original data and the demigrated data). Sometimes, mut-
ing is also applied in the migrated data domain, in case
the demigrated data exhibit enhanced low-frequency ar-
tifacts at far-offset traces (Figure D-2).

Appendix E

Step-by-step workflow
Based on the mathematical description of the con-

strained conjugate gradient least-squares migration, we
can see that it is quite difficult to represent the workflow
by a simple flowchart. Even the first iteration requires
many small steps and generates many different outputs,
each to be used in either the same iteration or the next
one. Therefore, we choose to represent the workflow
with a step-by-step guide for each iteration.

A step-by-step workflow for a maximum of n itera-
tions of constrained conjugate gradient least-squares
migration is as follows:

Iteration #0 (i.e., preparation iteration):

1) Mute the original data to avoid head wave contami-
nation. This is basically multiplying WTW with
data d∶WTWd.

2) Compute the fold and offset map. This step is a part
of Kirchhoff migration procedure, but it only needs
to be done once.

3) Migrate the data with antialiasing enabled, using the
muted original data and the calculated fold and off-
set map. An antialiasing feature in migration re-
duces migration artifacts. Applying the migration
operator GT to WTWd∶g0 ¼ GTWTWd.

4) Apply SOF to g0∶h0 ¼ Fðg0Þ and perform muting if
needed. The reason we apply SOF in iteration #0 is
to further constrain the result to improve the signal-
to-noise ratio. Plus, running SOF in this iteration
means we do not need to run SOF for iteration
#1, thereby saving us one step.

5) Demigrate the SOF-migrated result. This is equiva-
lent to applying the forward modeling operator G

to h0∶Gh0.
6) Mute the demigrated result. Again, multiplying

weight WTW with Gh0∶WTWGh0.

Iteration #1:

1) Update the residual: calculate α1 and r1:

α1 ¼ gT
0
g0∕ðGh0ÞTWTWGh0 and

WTWr1 ¼ WTWd − α1W
TWGh0: (E-1)

Thedenominatorofα1 isbasically thesquareofmuted
demigrated result WTWGh0. Because W consists
of 0 and 1 only (i.e., muted:w ¼ 0, nonmuted:w¼1),
WTW ¼ W, and thus ðWTWGh0ÞTðWTWGh0Þ ¼
ðWGh0ÞTðWGh0Þ ¼ ðGh0ÞTWTWðGh0).

Note that in theresidualcalculation,weuse themuted
result of original data and demigrated data, and thus
the updated residual is muted and we can skip the
muting step later on.

2) Update the model: m1 ¼ m0 þ α1h0 ¼ 0þ α1h0 ¼
α1h0 (because we assumem0 ¼ 0 as the starting sol-
ution). Because h0 is the SOF-applied result, we can
skip the constrain step.

3) Migrate the muted updated residual with antialias
disabled (because we do not want the residual to
be too smoothed): g1 ¼ GTWTWr1.

4) Mute the migrated residual, if needed (optional).
5) Update the conjugate gradient: calculate β1 and h1.
6) Demigrate the updated conjugate gradient: Gh1.
7) Mute the demigrated result: WTWGh1.

Iteration #k (2 ≤ k < n):

1) update the residual: calculate αk and rk:

αk ¼
gTðk−1Þgðk−1Þ

GhT
ðk−1ÞW

TWGhðk−1Þ
andWTWrk

¼ WTWrk−1 − αkW
TWGhk−1: (E-2)

2) Update the model: mk ¼ mk−1 þ αkhk−1.
3) Apply SOF on mk∶m̄k ¼ FðmkÞ.
4) Update the directional vector: h̄k ¼ m̄k −mk−1∕αk.
5) Migrate the muted updated residual with anti-alias

disabled: gk ¼ GTWTWrk.
6) Mute the migrated residual, if needed (optional).
7) Update the conjugate gradient: calculate βk and hk:

βk¼gTk gk∕gTðk−1Þgðk−1Þ; and hk¼gkþβkh̄k: (E-3)

8) Demigrate the updated conjugate gradient: Ghk.
9) Mute the demigrated result: WTWGhk.

Iteration #n (last iteration):

1) Update the residual: calculate αn and rn:

αn ¼ gTðn−1Þgðn−1Þ∕ðGhðn−1ÞÞTWTWGhðn−1Þ

and WTWrn ¼ WTWrn − αnW
TWGhn−1 (E-4)

2) Update the model: mn ¼ mn−1 þ αnhn−1.
3) Apply the SOF on mn∶m̄n ¼ FðmnÞ.

References
Biondi, B., 2001, Kirchhoff imaging beyond aliasing: Geo-

physics, 66, 654–666, doi: 10.1190/1.1444956.
Dev, A., and G. A. McMechan, 2009, Spatial antialias filter-

ing in the slowness-frequency domain: Geophysics, 74,
no. 2, V35–V42, doi: 10.1190/1.3052115.

Guo, S., B. Zhang, Q. Wang, A. Cabrales-Vargas, and K. J.
Marfurt, 2016, Noise suppression using preconditioned
least-squares prestack time migration: Application to the

SN22 Interpretation / August 2017

D
ow

nl
oa

de
d 

08
/2

4/
17

 to
 1

29
.1

5.
66

.1
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/1.1444956
http://dx.doi.org/10.1190/1.1444956
http://dx.doi.org/10.1190/1.1444956
http://dx.doi.org/10.1190/1.3052115
http://dx.doi.org/10.1190/1.3052115
http://dx.doi.org/10.1190/1.3052115


Mississippian Limestone: Journal of Geophysics and En-
gineering, 13, 441–453, doi: 10.1088/1742-2132/13/4/441.

Hestenes, M., and E. Stiefel, 1952, Methods of conjugate
gradient for solving linear systems: Journal of Research
of the National Bureau of Standards, 49 409–436, doi: 10
.6028/jres.049.044.

Lewis, J. M., S. Lakshmivarahan, and S. K. Dhall, 2006,
Dynamic data assimilation: A least squares approach:
Cambridge University Press.

Nemeth, T., H. Sun, and G. T. Schuster, 2000, Separation of
signal and coherent noise by migration filtering: Geo-
physics, 65 574–583, doi: 10.1190/1.1444753.

Nemeth, T., C. Wu, and G. T. Schuster, 1999, Least-squares
migration of incomplete reflection data: Geophysics, 64
208–221, doi: 10.1190/1.1444517.

Pramik, B., 2011, Broadband land acquisition— Survey de-
sign issues: 81st Annual International Meeting, SEG, Ex-
panded Abstracts, 4344–4348.

Sorenson, R., 2005, A dynamic model for the Permian
Panhandle and Hugoton fields, western Anadarko basin:
AAPG Bulletin, 89, 921–938, doi: 10.1306/03010504045.

Verma, S., S. Guo, T. Ha, and K. J. Marfurt, 2016, Highly
aliased ground-roll suppression using a 3D multiwindow
Karhunen-Loeve filter: Application to a legacy Missis-
sippi Lime survey: Geophysics, 81, no. 1, V79–V88,
doi: 10.1190/geo2014-0442.1.

Yu, J., J. Hu, G. T. Schuster, and R. Estill, 2006, Prestack
migration deconvolution: Geophysics, 71, no. 2, S53–
S62, doi: 10.1190/1.2187783.

Zeng, C., S. Dong, and B. Wang, 2014, Least-squares reverse
time migration: Inversion-based imaging toward true
reflectivity: The Leading Edge, 33, 962–968, doi: 10
.1190/tle33090962.1.

Zeng, C., S. Dong, and B. Wang, 2017, A guide to least-
squares RTM for subsalt imaging: Challenges and
solutions: Interpretation, 5, this issue, doi: 10.1190/
int-2016-0196.1.

Zhang, B., T. Lin, S. Guo, O. E. Davogustto, and K. J. Mar-
furt, 2016, Noise suppression of time-migrated gathers

using prestack structure-oriented filtering: Interpreta-
tion, 4, no. 2, SG19–SG29, doi: 10.1190/INT-2015-0146.1.

Thang Ha received bachelor's and
master's degrees in geophysics from
the University of Oklahoma, where
he is a Ph.D. student in geophysics ad-
vised by Kurt Marfurt. He is a member
of SEG, AAPG, EAGE, and the Geo-
physical Society of Oklahoma City.
His research interests include seismic
processing, 3D seismic attributes, pre-

stack data conditioning, least-squares migration, and auto-
matic classification of geological facies.

Kurt Marfurt began his geophysical
career teaching geophysics and con-
tributing to an industry-supported con-
sortium on migration, inversion, and
scattering (project MIDAS) at Colum-
bia University’s Henry Krumb School
of Mines in New York City. In 1981, He
joined Amoco’s Tulsa Research Center
and spent the next 18 years leading re-

search efforts in modeling, migration, signal analysis, basin
analysis, seismic attribute analysis, reflection tomography,
seismic inversion, and multicomponent data analysis. In
1999, he joined the University of Houston as a professor
in the department of geosciences and as a director of the
Allied Geophysics Laboratories. He is currently a member
of the Geophysical Societies of Tulsa and Houston, SEG,
EAGE, AAPG, AGU, and SIAM, and he serves as an assistant
editor for GEOPHYSICS. His current research activity includes
prestack imaging, velocity analysis and inversion of con-
verted waves, computer-assisted pattern recognition of geo-
logic features on 3D seismic data, and interpreter-driven
seismic processing. His research interests are in seismic sig-
nal analysis, 3D seismic attributes, seismic velocity analysis,
subsurface imaging, and multicomponent data analysis.

Interpretation / August 2017 SN23

D
ow

nl
oa

de
d 

08
/2

4/
17

 to
 1

29
.1

5.
66

.1
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1088/1742-2132/13/4/441
http://dx.doi.org/10.1088/1742-2132/13/4/441
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1190/1.1444753
http://dx.doi.org/10.1190/1.1444753
http://dx.doi.org/10.1190/1.1444753
http://dx.doi.org/10.1190/1.1444517
http://dx.doi.org/10.1190/1.1444517
http://dx.doi.org/10.1190/1.1444517
http://dx.doi.org/10.1306/03010504045
http://dx.doi.org/10.1306/03010504045
http://dx.doi.org/10.1190/geo2014-0442.1
http://dx.doi.org/10.1190/geo2014-0442.1
http://dx.doi.org/10.1190/geo2014-0442.1
http://dx.doi.org/10.1190/1.2187783
http://dx.doi.org/10.1190/1.2187783
http://dx.doi.org/10.1190/1.2187783
http://dx.doi.org/10.1190/tle33090962.1
http://dx.doi.org/10.1190/tle33090962.1
http://dx.doi.org/10.1190/tle33090962.1
http://dx.doi.org/10.1190/int-2016-0196.1
http://dx.doi.org/10.1190/int-2016-0196.1
http://dx.doi.org/10.1190/int-2016-0196.1
http://dx.doi.org/10.1190/int-2016-0196.1
http://dx.doi.org/10.1190/INT-2015-0146.1
http://dx.doi.org/10.1190/INT-2015-0146.1
http://dx.doi.org/10.1190/INT-2015-0146.1

